
Random Input and Automated Output Generation in Submitty
Evan Maicus

Rensselaer Polytechnic Institute
maicue@rpi.edu

Drumil Patel
Indian Institue of Technology, Roorkee

drumilpatel720@gmail.com

Matthew Peveler
Rensselaer Polytechnic Institute

pevelm@rpi.edu

Barbara Cutler
Rensselaer Polytechnic Institute

cutler@cs.rpi.edu

ABSTRACT
“Fuzzing,” testing a codebase against a set of randomly generated
inputs, has become a promising model of testing across the industry
due to its ability to reveal difficult to detect bugs. Separately, the use
of randomized inputs when testing student code submissions re-
moves the potential for student “hard-coding” behavior. Motivated
by these factors, we present a solution for the automated generation
of testcase inputs and expected outputs within Submitty, an open
source automated grading system from Rensselaer Polytechnic In-
stitute. We detail a new, enhanced workflow that allows instructors
to provide our testing system with an assignment-specific input
generation script and an assignment solution. The input generation
script is run at student test-time, providing students with either
entirely generated inputs, or a combination of generated and hand-
crafted testcases. The instructor solution is run against the same
inputs to produce expected results. This model of testcase specifica-
tion carries the benefit of simple regeneration of expected output
files if an assignment’s specification changes after submissions open
or between semesters. We present preliminary results of the use of
random input generation in our large introductory programming
courses, and evaluate the ability of random inputs to curb student
hardcoding behavior as it relates to an “early submission incentive”
system, which grants students an extension for achieving a target
assignment score early in the week an assignment is due. We ex-
amine random input generation’s ability to reveal bugs in student
submissions from previous semesters.

CCS CONCEPTS
• Computing Education→Computing Education
Programs; Computer Science Education.

KEYWORDS
Autograding, Testing, Fuzz Testing
ACM Reference Format:
Evan Maicus, Drumil Patel, Matthew Peveler, and Barbara Cutler. 2019.
Random Input and Automated Output Generation in Submitty. In Proceed-
ings of ACM Technical Symposium on Computer Science Education (SIGCSE
2020). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2020, March 2020, Portland, Oregon, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 AUTOMATED GRADING CHALLENGES
Our work addresses multiple major challenges common to all auto-
mated grading systems. First, it represents a significant time savings
when specifying new assignments for which a solution has been
written or when amending assignment specifications. Second, the
specification of testcases with random inputs allows instructors to
“fuzz” student code. This carries the added benefit of halting stu-
dent hard-coding behavior. Finally, our system allows instructors
to capture traditionally difficult to collect expected outputs, such as
outputs that result from scripted mouse and keyboard interactions.

2 RANDOM INPUT CASE STUDY
We present preliminary results of the use of random input genera-
tion in our current 300 student Data Structures course. Anecdotally
the system teaches students about the use of and importance of
fuzzing in automated software testing and builds confidence in the
quality of their own code. Using student submissions and data from
this vs. prior terms we evaluate the ability of random inputs to
curb student hardcoding behavior. Specifically, we are interested in
reducing the use of hardcoding to beat the system with our “early
submission incentive” policy, which grants students a deadline ex-
tension for achieving a target assignment score early in the week an
assignment is due. We also examine random input generation’s abil-
ity to reveal bugs in student submissions that were not accounted
for in legacy testcases from previous semesters.

3 CONCLUSIONS & FUTUREWORK
Our contribution is the integration of random test case generation
and evaluation of output in an open source automated grading tool.
Our system effectively halts student hard-coding behavior, makes
assignment management simpler for instructors with pre-written
assignment solutions, and allows “fuzzing” of student assignments.

By its nature, input fuzzing works best with many hundreds or
thousands of testcases. While our system scales well to such large
test-suites, the website frontend viewed by the student has been
written with smaller, hand-crafted test suites in mind. As future
work, we will enhance our website to better aggregate and display
the results of hundreds of “fuzz” testcases.

4 WHAT IS SUBMITTY?
Submitty is an open source automated grading and course man-
agement system, developed at Rensselaer Polytechnic Institute.
Submitty allows secure testing of progamming assignments with
with immediate feedback to students and complementary man-
ual grading. It also includes a integrated discussion forum, team
assignments, static analysis, and many other features.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGCSE 2020, March 2020, Portland, Oregon, USA Maicus et al.

5 POSTER LAYOUT
Our poster will contain 5 columns. From left to right, these will
contain:

(1) Our abstract (as above) and information about the Submitty
autograding system. A high level explanation of Submitty’s
previous method of assignment configuration, with illustra-
tive diagrams.

(2) An explanation of output generation using an instructor
solution, including examples of generated outputs for assign-
ments where output is difficult to otherwise capture.

(3) A detailed explanation of random input generation, includ-
ing examples and an illustrative diagram. We will also an-
alyze the performance and security implications of these
extensions.

(4) The results of our case study, including information about the
effectiveness of “fuzzing,” and the effects of random testcase
generation in supressing student hard coding behavior.

(5) Future work and additional details about Submitty and its
associated resources.

6 AUTHOR EXPERTISE
Barbara Cutler, Matthew Peveler, and Evan Maicus have published
a collective 12 works in the field of automated grading and course
management. Drumil Patel was the primary developer for this
Submitty extension for his 2019 Google Summer of Code project.

REFERENCES
[1] Ella Bounimova, Patrice Godefroid, and David Molnar. 2013. Billions and billions

of constraints: whitebox fuzz testing in production. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, San Francisco, CA,
USA. https://dl.acm.org/citation.cfm?id=2486805

[2] Evan Maicus, Matthew Peveler, Stacy Patterson, and Barbara Cutler. 2019. Auto-
grading Distributed Algorithms in Networked Containers. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education - SIGCSE ’19. ACM
Press, Minneapolis, MN, USA, 133–138. https://doi.org/10.1145/3287324.3287505

[3] Matthew Peveler, Evan Maicus, and Barbara Cutler. 2019. Comparing Jailed
Sandboxes vs Containers Within an Autograding System. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education - SIGCSE ’19. ACM
Press, Minneapolis, MN, USA, 139–145. https://doi.org/10.1145/3287324.3287507

[4] Sumukh Sridhara, Brian Hou, Jeffrey Lu, and John DeNero. 2016. Fuzz Testing
Projects in Massive Courses. In Proceedings of the Third (2016) ACM Conference
on Learning @ Scale - L@S ’16. ACM Press, Edinburgh, Scotland, UK, 361–367.
https://doi.org/10.1145/2876034.2876050

https://dl.acm.org/citation.cfm?id=2486805
https://doi.org/10.1145/3287324.3287505
https://doi.org/10.1145/3287324.3287507
https://doi.org/10.1145/2876034.2876050

	Abstract
	1 Automated Grading Challenges
	2 Random Input Case Study
	3 Conclusions & Future Work
	4 What is Submitty?
	5 Poster Layout
	6 Author Expertise
	References

